Determination of in situ bacterial growth rates in aquifers and aquifer sediments.
نویسندگان
چکیده
Laboratory and field-scale studies with stained cells were performed to monitor cell growth in groundwater systems. During cell division, the fluorescence intensity of the protein stain 5-(and 6-)-carboxyfluorescein diacetate succinimidyl ester (CFDA/SE) for each cell is halved, and the intensity can be tracked with a flow cytometer. Two strains of bacteria, Comamonas sp. strain DA001 and Acidovorax sp. strain OY-107, both isolated from a shallow aquifer, were utilized in this study. The change in the average generation or the average fluorescence intensity of the CFDA/SE-stained cells could be used to obtain estimates of doubling times. In microcosm experiments, the CFDA/SE-based doubling times were similar to the values calculated by total cell counting and were independent of cell concentration. Intact and repacked sediment core experiments with the same bacteria indicated that changes in groundwater chemistry were just as important as growth rates in determining planktonic cell concentrations. The growth rates within the sediment cores were similar to those calculated in microcosm experiments, and preferential transport of the daughter cells was not observed. The experiments indicated that the growth rates could be determined in systems with cell losses due to other phenomena, such as attachment to sediment or predation. Application of this growth rate estimation method to data from a field-scale bacterial transport experiment indicated that the doubling time was approximately 15 days, which is the first known direct determination of an in situ growth rate for bacteria in an aquifer.
منابع مشابه
Size-selective predation on groundwater bacteria by nanoflagellates in an organic-contaminated aquifer.
Time series incubations were conducted to provide estimates for the size selectivities and rates of protistan grazing that may be occurring in a sandy, contaminated aquifer. The experiments involved four size classes of fluorescently labeled groundwater bacteria (FLB) and 2- to 3-microns-long nanoflagellates, primarily Spumella guttula (Ehrenberg) Kent, that were isolated from contaminated aqui...
متن کاملDetermination of ground water quality associated with lignite mining in arid climate
Ground water and surface water create a range of problems in lignite mining utilizing surface mining methods. In order to create a safe and economic mining environment, it is essential to carry out mining after dewatering the rock mass surrounding the lignite mines by advance dewatering techniques. This paper briefly describes the ground water regimes including pressure gradients associated wit...
متن کاملAnaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment.
Sediments from the sulfate-reduction zone of a petroleum-contaminated aquifer, in which benzene persisted, were inoculated with a benzene-oxidizing, sulfate-reducing enrichment from aquatic sediments. Benzene was degraded, with apparent growth of the benzene-degrading population over time. These results suggest that the lack of benzene degradation in the sulfate-reduction zones of some aquifers...
متن کاملTransport of Microorganisms in the Terrestrial Subsurface: In Situ and Laboratory Methods
Although the use of microbial tracers has been instrumental in developing a better understanding of groundwater movement in many types of aquifers (1, 17, 34, 141, 149, 189, 190, 239), the importance of studying the transport behavior of the microorganisms themselves is now very apparent. This is due largely to an increasing dependence on limited and fragile groundwater resources. In particular...
متن کاملOxidative Dissolution of Biogenic Uraninite in Groundwater at Old Rifle, CO.
Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO₂), a desirable U(VI) bioreduction product, in the Old Rif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 69 7 شماره
صفحات -
تاریخ انتشار 2003